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Solutions of a class of non-Markovian Fokker-Planck equations

I. M. Sokolov
Institut für Physik, Humboldt-Universita¨t zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany

~Received 17 July 2002; published 2 October 2002!

We show that a formal solution of a rather general non-Markovian Fokker-Planck equation can be repre-
sented in a form of an integral decomposition and thus can be expressed through the solution of the Markovian
equation with the same Fokker-Planck operator. This allows us to classify memory kernels into safe ones, for
which the solution is always a probability density, and dangerous ones, when this is not guaranteed. The first
situation describes random processes subordinated to a Wiener process, while the second one typically corre-
sponds to random processes showing a strong ballistic component. In this case the non-Markovian Fokker-
Planck equation is only valid in a restricted range of parameters, initial and boundary conditions.
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Many physical phenomena related to relaxation in co
plex systems are described by non-Markovian Fokker-Pla
equations in a form

]

]t
P~x,t !5E K~ t2t8!LP~x,t8!dt8, ~1!

where K(t) is a memory kernel and whereL is a linear
operator acting on variable~s! x. Such equations are ofte
postulated on the basis of linear-response consideration
different physical situations and in several cases can be m
or less rigorously derived based on a microscopic desc
tion. In the symmetric case, the usual form of the operatoL
reads:

LP~x,t !5DS 2¹
f~x!

kBT
P~x,t !1DP~x,t ! D , ~2!

where D is the diffusion coefficient~here supposed to b
coordinate independent! and f(x)52¹U(x) is a potential
force. Depending on boundary conditions, the opera
Eq. ~2! may or may not possess an equilibrium sta
P(x,t)5W(x), which corresponds to the solution of th
equation 2(kBT)21f(x)W(x)1“W(x)50, so that W(x)
5exp@2U(x)/kBT# is a Boltzmann distribution. If any equi
librium state exists, Eq.~2! can be rewritten in the form

LP~x,t !5D(
a,b

]

]xa
W(x…

]

]xb

P~x,t !

W~x…
, ~3!

which is known to appear naturally when describing therm
dynamics of complex systems when reducing their beha
to a few relevant variables~thermodynamical observable
xa) as is done, e.g., in the Zwanzig’s approach@1#. Com-
pared to the general form of Ref.@1#, Eq. ~1! lacks the drift
term; in some cases this general form can be reduced to
~1!, say by a Galilean transformation, see, Refs.@2,3#.

The Eq. ~1! with a d-functional memory kernelK(t)
5d(t) corresponds to a usual Fokker-Planck equation~FPE!
describing Markovian processes. The solution of this eq
tion is known to be a proper probability density@so that
P(x,t)>0 and*P(x,t)dx51] if the stationary state exist
~i.e., whenever the Fokker-Planck operator possesses a
1063-651X/2002/66~4!/041101~5!/$20.00 66 0411
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eigenvalue!, otherwise it is a nonproper probability densi
@P(x,t)>0 and*P(x,t)dx<1].

Many special forms of memory kernels are of interest. W
note that fractional Fokker-Planck equations widely d
cussed as a relevant mathematical tool for the descriptio
many complex phenomena@3# belong just to the class de
scribed by Eq.~3! with K(t) being a power function oft:
K(t)}t2a, and that the so-called distributed-order fraction
equations, introduced on the phenomenological basis in
@4# and describing slow processes lacking scaling@5# corre-
spond to related kernels in a formK(t)}* f (a)t2ada. On
the other hand, much less exotic exponential kernels,
scribing the rather fast memory decay, are ubiquitous. M
complex kernels are encountered when describing react
in polymer systems@6,7#.

The subdiffusive processes described by fractio
Fokker-Planck equations with 1,a,2 are known to be sub
ordinated to a Wiener process@8,9#, so that the solution of
this equation can be obtained through an integral transfor
tion of the solution of a usual~Markovian! FPEs with the
same potential, initial and boundary conditions. As we p
ceed to show, some analogue statements can be done al
the general version of the non-Markovian FPE. The prop
ties of such a transform and some important consequence
its existence will be discussed in what follows.

Let us show that the formal solution of the no
Markovian Fokker-Planck equation can be obtained in
form of an integral decomposition

P~x,t !5E
0

`

F~x,t!T~t,t !dt, ~4!

where F(x,t) is a solution of a Markovian FPE with th
same Fokker-Planck operatorL,

]

]t
F~x,t !5LF~x,t !, ~5!

and for the same initial and boundary conditions, and
function T(t,t) is connected with the memory kernelK(t)
@8,9#. Parallel to Ref.@8# we shall callt the internal variable
of decomposition, andx and t its external variables. More
©2002 The American Physical Society01-1
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over, we show that the Laplace transformT̃(t,u) of T(t,t)
in its external variable,T̃(t,u)5*0

`T(t,t)e2utdt reads

T̃~t,u!5
1

K̃~u!
expF2t

u

K̃~u!
G , ~6!

where K̃(u) is a Laplace transform of the memory kern
K(t). Eq. ~6! means that the Laplace transform ofP(x,t) in
its temporal variable reads

P̃~x,u!5E
0

`

dte2utE
0

`

dtF~x,t!T~t,t !

5E
0

`

dtF~x,t!T̃~t,u!

5E
0

`

dtF~x,t!
1

K̃~u!
expF2t

u

K̃~u!
G

5
1

K̃~u!
F̃S x,

u

K̃~u!
D , ~7!

whereF̃(x,u) is a Laplace transform ofF(x,t) in its second
variablet. Let us now note that the Laplace transform of t
non-Markovian FPE, Eq.~1! reads

uP̃~x,u!2P~x,0!5K~u!LP̃~x,u!, ~8!

whereP(x,0) is the initial condition. Inserting the form, Eq
~7!, into ~8! one gets

u

K~u!
F̃S x,

u

K~u! D2P~x,0!5LF̃S x,
u

K~u! D . ~9!

Introducing a new variables5u/K(u) we rewrite Eq.~9! in
a form

sF̃~x,s!2P~x,0!5LF̃~x,s!, ~10!

in which one readily recognizes the Laplace transform of
ordinary, Markovian FPE, Eq.~5!, with the same initial con-
dition P(x,0). This completes our proof. Thus, the soluti
of a non-Markovian Fokker-Planck equation of the type
Eq. ~1! in the Laplace domain is connected with the soluti
of the regular Fokker-Planck equation through

P̃~x,u!5
1

K̃~u!
F̃S x,

u

K̃~u!
D . ~11!

In the time domain this corresponds to Eq.~4!, whereT(t,t)
is given by Eq.~6!.

The existence of the formal solution of the no
Markovian FPE in form of Eq.~11! brings several advan
tages. It gives an analytical tool to express the solution of
non-Markovian problem through the solution of the Marko
ian one, which is often known~at least for simple potential
and simple boundary conditions!. Even if the solutions are
04110
n

f

e

not known analytically, a numerical procedure based on
~4! can be much simpler than the direct solution of Eq.~1!.
Moreover, in many cases the non-negativity of the solut
of a non-Markovian FPE~assumed to be a probability den
sity! can be easily provedwithout solving the equation. This
is true for a wide class of relaxation processes subordina
to a Wiener process, i.e., for the equations with ‘‘safe’’ ke
nels ~vide infra!.

Note thatF(x,t) is for eachx a non-negative function o
t, since it is a~possibly, nonproper! probability density func-
tion ~pdf! in x. A function f (u) is a Laplace transform of a
non-negative function defined on@0,̀ ) if and only if f (u) is
completely monotone, i.e.,f (0).0 and (21)nf (n)(u)>0,
see, Chap. XIII of Ref.@10#. Remember now, thatP(x,u)

5F̃„x,u/K̃(u)…/K̃(u), where the functionF̃(x,s) is com-
pletely monotone in its second variable. This allows us

classify all kernels into the ‘‘safe’’ ones, for whichP̃(x,u) is
completely monotone foranycompletely monotone function

F̃(x,u), and the ‘‘dangerous’’ ones, when this is not the ca
Noting that the product of two completely monotone fun
tions is a completely monotone function and that a funct
of the typef (g(u)) is completely monotone, iff (s) is com-
pletely monotone and if the functiong(u) is positive and
possesses a completely monotone derivative@10#, we can
easily formulate a sufficient condition for safety. It is th
case if both functions,K̃(u) and u/K̃(u) are positive and
possess completely monotone derivatives. As we procee
show, in this caseT(t,t) is a pdf in its first variable. The
kernels for which this is the case are ‘‘safe’’ in the sense t
whatever the Fokker-Planck operatorL is ~i.e., whatever the
potential, the initial and the boundary conditions are!, the
solutions of the non-Markovian FPE will be non-negati
and physically sound. The dangerous kernels correspon
the situations when the physical solutions of the no
Markovian Fokker-Planck equations exist only in the r
stricted domain of parameters.

The functionT(t,t) is always normalized to unity with
respect to variablet. To see this, let us considerJ(t)
5 *0

`dtT(t,t). Its Laplace transform is J̃(u)

5*0
`dtT̃(t,u)5K̃21(u)*0

`dt exp@2tu/K̃(u)#51/u, so that

J̃(t)[1. On the other hand,T(t,t) may or may not be a
probability density oft on @0,̀ ), depending on whether thi
function is non-negative or may take negative values. For
safe kernelsT(t,t) is a probability densityT̃(t,u) has just
the form T̃(t,u)5exp@2tu/K̃(u)#/K̃(u), i.e., corresponds ex
actly to the form mentioned above where we take e
(2tu) instead of functionF̃. The non-negativity of the solu
tions of the non-Markovian FPEs then immediately follow
from the fact that the integrand in Eq.~4! is a product of two
non-negative functions.

Let us now consider a few examples.
Example 1. As a simplest example let us consid

the Markovian situation, in whichK(t)5d(t), so that
K(u)51. The function T̃(t,u)5K(u)21exp@2tu/K(u)#
5exp@2tu#, so thatT(t,t)5d(t2t), and the decomposi
tion, Eq. ~4!, is an identity transform.
1-2
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Example 2. An example of a safe kernel is a power-la
kernelK(t).t2a with 1,a,2, both its Laplace transform
K̃(u)5G(12a)ua21 and the functionu/K̃(u)5u22a/G(1
2a) are positive and have a completely monotonic deri
tive. Note that such power-law kernels just correspond to
fractional Fokker-Planck equations~with the additional frac-
tional derivative of the orderg5a21 in their right-hand
side, i.e., with 0,g,1), which got now to be popular tool
in describing slow relaxation@3#. These equations are abs
lutely safe @8,9#. The same is valid for the kernels of th
distributed-order equations,K(t)}* f (a)t2ada, as long as
the functionf (a) vanishes outside of the interval (1,2), Re
@5#.

Example 3. As an example of a dangerous kernel we co
sider a simple exponentially decaying oneK(t)5r exp
(2rt) ~the form is taken to be normalized in a way that f
r→` it tends to ad function!. The Laplace transform of this
kernel reads K̃(u)5r /(u1r ), so that u/K̃(u)5(u2

1ru)/r . Here the first and the second derivative of the l
function have the same positive sign; thus it is not co
pletely monotone. Let us show that the non-Markovian F
with such a kernel may lead to negative solutions.

This really is the case if the system’s behavior in a co
stant field is considered. In what follows we restrict ou
selves to a one-dimensional situation. The Green’s func
solution of the FPE in a constant field@initial condition
F(x,0)5d(x)] reads

F~x,t!5
1

2ApDt
expF2

~x2m f t!2

4Dt G , ~12!

with m5D/kBT, so that its Laplace transform in its tempor
variable is

F̃~x,s!5
exp~m f x/2D !

2ApD
3E

0

` 1

At
expF2S m2f 2

4D
1sD

3t2
x2

4D
t21Gdt

5
exp~2zl!

2AD

1

Az21s
exp@22A~z21s!l2# ~13!

@see, 2.3.16.2 of Ref.@11##, where the variablesl5x/2AD

andz5m f /2AD are introduced. The functionP̃(x,u) is ob-
tained fromF̃(x,s) by multiplying by 1/K̃(u) and by substi-
tution s5u/K̃(u), so that

P̃~x,u!5
exp~2zl!

2AD

~u1r !/r

Az21u~u1r !/r

3exp@22uluAz21u~u1r !/r #. ~14!

This function is not completely monotonic. Its first derivativ
~which always has to be negative in the case of a p!
changes sign, getting~for small u, i.e., in the long-time
asymptotic! positive for z.(2r )21(ulur 21Al2r 412r 3)
04110
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~here we tookz.0, so that the overall distribution moves t
the right!. The oscillations occur initially at smallulu, corre-
sponding to the initial position. Since the maximum of t
pdf moves to the right, they occur at the left flank of th
distribution, and forz.zc5Ar /2. Thus, if the forcef is
strong enough,f .A2rD /m, the solution of non-Markovian
FPE ceases at long times to be a probability density, exc
for the Markovian caser→`. On the other hand, for the
force-free case of pure diffusion (z50) we have

P̃~x,u!5
1

2AD

A~u1r !/r

Au
exp@22uluAu~u1r !/r #,

~15!

which is a completely monotonic function defining a pdf. F
u small (t large! this function tends to a form correspondin
to a Gaussian

P̃~x,u!.
1

2AD

1

Au
exp@22uluAu#, ~16!

which is our Eq.~12! with f 50, while for largeu ~small t)
we have

P̃~x,u→0!5
1

2ADr
exp@22uluu/Ar # ~17!

corresponding to

P~x,t !.
1

2ADr
dS 2ulu

Ar
2t D 5

1

2
d~ uxu2ADrt !. ~18!

At early times an initial pulse propagates as a wave, while
later times the propagation gets diffusive, Ref.@12#. Note
that Dr has a dimension of velocity squared~so that D
5v2/r , wherev is the typical velocity andtc51/r is the
correlation time!. Thus, at short timesP(x,t)5 1

2 d(ux
u2vt), and the overall equation describes the transition fr
a ballistic to a diffusive propagation, i.e., a kind of aDrude
model. The mean-free path in the model is exactlyvtc

5AD/r . The breakdown of the physical solution for larg
forces gets now a clear physical meaning. The c
f .A2rD /m corresponds to the situation when the mean
locity gain on the mean free path is larger than the rms
locity v5ADr , clearly the case in which the diffusion coe
ficient D can no more be considered as force-independ
~which is only possible form f !v where the force enters a
a perturbation!.

Thus, our analysis shows that the transition to nonposi
solutions denotes leaving the region of physical validity
the model; the fact that the kernel is ‘‘dangerous’’ shows, t
corresponding equations are only reasonable in a restri
domain of parameters, initial and boundary conditions, a
that other conditions are unphysical.

The behavior ofP(x,t) for the exponential kernel and fo
f 50 is shown in Fig. 1, where the results of numerical
version of Eq.~14! are shown fort50.5, 1, 2, and 3. Here
only the part forx.0 is shown sinceP(x,t) is an even
1-3
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function of x. The overall form of the distribution with the
two side peaks is typical for systems showing random-w
behavior with strong ballistic component, such as Le´vy
walks. At difference with the Le´vy-walk situation, the overall
weight of the peaks decays very fast. Thus, fort50.5 they
absorb more than one half of the overall probability, wh
for t53 the most of the probability lies in the central part
the distribution, whose form slowly tends to a Gaussian.

Note that the situation when the short-time behavior
ballistic and corresponds to the distribution with pronounc
side peaks~stemming essentially from the solution of th
Liouville equation! is typical ~as a short-time behavior! for
all kernelsK(t) which tend to a constant value att→0; For
all of them K̃(u).K(0)/u for u large, so that Eq.~17!
asymptotically holds. Turning to kernels behaving at sh
times as a power-law,K(t).t2a @corresponding toK(u)
.G(12a)ua21], we note that the kernels with 0,a,1
lead to the similar kind of behavior~bimodal pdf!, see Ref.
@13#, where the peaks are the less pronounced the largera.
On the other hand, safe power-law kernels with 1,a,2
lead to pdf’s showing a single peak at zero. It is also int
esting to discuss the two other situations: The kernels s
ing from zero and the strongly decaying power laws. Now
situation of a kernel starting at zero, i.e., asK(t).tb with
b.0, corresponds toK̃(u).u212b and therefore to

P̃~x,u!5
ub/2

2AD
exp@22uluu11b/2#

which is not a completely monotonic function~its first de-
rivative changes sign atu5@2ulu(21b)/b#22/(21b)), and
thus is not a Laplace transform of a pdf. The same is the c
for the kernels with stronger divergence,K(t).t2a with
a.2. Here

P̃~x,u!5
u2a/2

2AD
exp@22uluu12a/2#

FIG. 1. The time evolution of the Green’s function solution o
non-Markovian diffusion equation (f 50), see text for details. The
parameters areD5 r 51, so that the peaks move with the veloci
v51. The curves correspond tot50.5, 1, 2, and 3~from left to
right!.
04110
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is again not a completely monotonic function; its seco

derivativeP̃uu(x,u) ~which is essentially a quadratic form i
ulu) possesses a positive root for alla.2. Thus, the set of
kernels which correspond to physical behavior~in a force-
free case! consists of kernels that behave at smallt asK(t)
.t2a with 0<a<2. All other kernels can be considered
approximations which are not valid at short times.

Let us make some notes about the long-time asympt
behavior. Fort large all integrable kernels correspond to t
behaviorK(u)→I with I 5*0

`K(t)dt, and thus lead to

P̃~x,u!5
1

2AD

1

AIu
exp@22uluAu/I #,

i.e., to the Gaussian behavior. All these kernels corresp
essentially to the processes that can at longer times be
proximated by a Markovian process. The kernels whose
tegral diverges are exemplified by the safe power-law-l
kernels K(t)}t2a with 1<a<2, where the divergence
stems from the short-time behavior, and the danger
power-laws (0<a,1), where the integral diverges at infin
ity. Both of them correspond to nondecoupling memory. T
situations are considered in detail in Refs.@3,8#. The growing
kernels are definitely unphysical.

Whenever the kernel is safe, the variablet can be inter-
preted as an operational time, andT(t,t) is a pdf of the
operational timet at physical timet, and our integral decom
position corresponds to asubordination. WheneverT(t,t)
can be considered as pdf resulting from a random proc
with non-negative increments, we have to do with
continuous-time random walk situation~CTRW! or its con-
tinuous limit. The corresponding solutions of the no
Markovian FPEs~including the Green’s function solutions!
can then be represented as the solutions of the ordinary
corresponding to different final operational times; these
lutions are weighted with the distribution of this final oper
tional time, which is given by the pdfT(t,t). Thus, the
ensemble of the sample paths corresponding to a ran
process described by the non-Markovian FPE with a s
kernel can be visualized as an ensemble of paths~random
walks! of a process described by a corresponding Markov
equation, taken not at a given timet, but having different
temporal ‘‘lengths’’~duration!.

The dangerous kernels correspond to the situation w
some of these paths enter with negative weight, so that
overall positiveness of the solution cannot in general
guaranteed. We note that the case of the exponential ke
~for which the non-Markovian FPE can be rewritten in t
form of the telegrapher’s equation! can be considered as a
approximation for a CTRW with the waiting-time distribu
tion being a difference of two exponentials@12#. However,
neglecting higher terms in such an approximation leads
the fact that the exponential kernel is dangerous, and tha
1-4
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positiveness of the solution is not always guaranteed.
Let us now summarize our findings. We considered a

mal solution of a rather general form of a non-Markovi
Fokker-Planck equation and have shown that this can be
resented in a form of integral decomposition. This allows
to classify the memory kernels into safe ones, for which
solution of the non-Markovian FPE is always a probabil
density, and dangerous ones, when this is not guarantee
this case the non-Markovian FPE is only valid in a restric
04110
r-

p-
s
e

In
d

range of parameters, or under special initial and bound
conditions. The examples of the non-Markovian FPE w
dangerous kernels considered render clear that such e
tions describe the processes with strong ballistic compon
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